
Ab initio description of heterostructural alloys: Thermodynamic and structural properties
of MgxZn1−xO and CdxZn1−xO

A. Schleife, M. Eisenacher, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt
Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität and European Theoretical Spectroscopy Facility (ETSF),

Max-Wien-Platz 1, 07743 Jena, Germany
�Received 19 March 2010; revised manuscript received 4 May 2010; published 17 June 2010�

Pseudobinary heterostructural alloys of ZnO with MgO or CdO are studied by composing the system locally
of clusters with varying ratio of cations. We investigate fourfold �wurtzite structure� and sixfold �rocksalt
structure� coordination of the atoms. By means of density-functional theory, we study a total number of 256
16-atom clusters divided into 22 classes for the wurtzite structure and 16 classes for the rocksalt structure for
each of the alloy systems. The fraction with which each cluster contributes to the alloy is determined for a
given temperature T and composition x within �i� the generalized quasichemical approximation, �ii� the model
of a strict-regular solution, and �iii� the model of microscopic decomposition. From the cluster fractions, we
derive conclusions about the miscibility and the critical compositions at which the average crystal structure
changes. Thermodynamic properties such as the mixing free energy and the mixing entropy are investigated for
the three different statistics. We discuss the consequences of the two different local lattice structures for
characteristic atomic distances, cohesive energies, and the alloys’ elasticities. The differences in the properties
of MgxZn1−xO and CdxZn1−xO are explained and discussed.
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I. INTRODUCTION

Recently, ZnO has attracted renewed attention as a closely
lattice-matched substrate for GaN and also as a potentially
useful active optoelectronic material in its own right.1–4

When doped with Al, it plays a role as a transparent conduct-
ing oxide in solar cells5 but also microelectronic and sensory
devices may be fabricated involving oxides such as ZnO.6,7

Further, it is environmentally friendly, biocompatible, and
tends to form nanostructures.8

The tailoring of material properties is an important reason
for combining ZnO with other group-II oxides in alloys and
heterostructures. Mixed MgxZn1−xO crystals allow to tune
the energy gap from about 3.4 eV of wurtzite �wz� ZnO
toward the ultraviolet spectral region with at least 4.4 eV in
MgxZn1−xO.9–11 Conversely, pseudobinary CdxZn1−xO alloys
tend to close the gap and are, therefore, suitable candidates
for optoelectronic devices in the visible spectral range.12

Moreover, quantum-well and other heterostructures based on
the combinations MgxZn1−xO /ZnO and ZnO /CdxZn1−xO al-
low an additional tailoring of electronic and optical proper-
ties by means of quantum-confinement effects.6,12,13

The combination of these group-II oxides in alloys and
heterostructures raises several fundamental questions since
there is a crystal structure mismatch: while some binary
II-VI compounds occur in the fourfold-coordinated wz
structure �e.g., ZnO�, others show the sixfold-coordinated
rocksalt �rs� structure �e.g., MgO and CdO� under ambient
conditions.14,15 Isovalent and isostructural alloys of II-VI
constituents are generally thermodynamically unstable be-
cause their mixing enthalpy in either the rs structure or the
wz structure is positive.16 A thermodynamical miscibility
only exists at very high temperatures, i.e., where the mixing
entropy is sufficiently large; at lower temperatures there is a
tendency for a phase separation of the alloys.17 However,
isovalent but heterostructural II-VI alloys seem to be stable

under certain conditions: XxZn1−xO alloy films occur in wz
structure for x�0.55 �X=Mg� �Refs. 18–20� or x�0.32
�X=Cd, grown under nonequilibrium conditions�.12,13 De-
pending on the composition x, the film preparation may give
rise to a nonuniformity of pseudobinary thin films as ob-
served experimentally for MgxZn1−xO.21 With increasing mo-
lar fractions x �Mg or Cd content�, a change in the coordina-
tion �fourfold to sixfold� of the atoms is expected. Both
hexagonal and cubic MgxZn1−xO thin films are reported.22

The situation in pseudobinary CdxZn1−xO is less clear. The rs
structure of CdO seems to limit the equilibrium solubility in
wz-ZnO to molar fractions below x=0.07.23,24 On the other
hand, metal-organic chemical vapor deposition �MOCVD�
techniques produced alloys up to x=0.7.13 Molecular beam
epitaxy �MBE� leads to epilayers with a structure close to the
wz one without an indication for a phase separation up to a
Cd concentration of x=0.32.12

Summarizing, there is no microscopic picture of how the
heterostructural aspect influences the properties of isovalent
pseudobinary alloys with oxygen as anion. Stability, solubil-
ity, and tendency of decomposition of systems such as
MgxZn1−xO or CdxZn1−xO are barely understood so is their
different behavior. One reason is that most of the existing
theoretical studies are limited to ordered structures such as
MgZnO2 �Refs. 25 and 26� or somewhat more complex
geometries.16

On the other hand, the theoretical methods for the descrip-
tion of the thermodynamic and structural properties of
pseudobinary alloys of the type AxB1−xC have been devel-
oped over the last 20 years. A basic approach is to simulate
the configurational average by representing all possible oc-
curring local bonding configurations using certain crystal ge-
ometries. There is one study27 in which the chemically dis-
ordered MgxZn1−xO alloys have been simulated using special
quasirandom structures.28 In another approach,29,30 the mix-
ing free energy of a random alloy is described combining a
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cluster-expansion method31–33 with the generalized qua-
sichemical approximation �GQCA�.34 In several publications
about pseudobinary alloys with the first-row elements N or O
as anions,27,30,35 this method has been applied together with
an ab initio description of total energies and atomic geom-
etries. However, in all these studies, the �local� crystal struc-
ture has been fixed being wz, zincblende, or rs. Only re-
cently, the isovalent but heterostructural MgO-ZnO system
has been studied by combining the rs with the wz crystal
structure within a cluster expansion.16,36 Energetic stability
has been found in the sixfold-coordinated structure for Zn
concentrations below 67%, giving rise to spontaneously or-
dered alloys.16 Without a configurational average, i.e., by
studying only certain clusters with fixed molar fractions,36 no
conclusions are possible for different growth situations.
Coherent-potential approximation calculations37 for various
crystal phases allowed for the construction of a phase dia-
gram with a phase transition from wz to rs close to x=0.33.
However, the coherent-potential approximation, as a single-
site theory, is expected to be more reliable close to the binary
end components whereas for intermediate compositions x,
the single-site approximation is questionable.

In this paper, we extend the generalized quasichemical
approach for one local crystal structure to alloys that consist
of two binary compounds with two different equilibrium
crystal structures, i.e., rs and wz. The results of the GQCA
are compared to two other cluster statistics, which may be
considered as limiting cases of the GQCA with respect to the
number of possible atom arrangements. The theory is applied
to heterostructural MgxZn1−xO and CdxZn1−xO alloys. In Sec.
II, we present a cluster expansion for the rs crystal structure
along with the combined statistics that deals with wz and rs
clusters simultaneously. The computational approaches that
are used for carrying out the actual calculations are explained
in Sec. III. Results for the thermodynamic properties are
given in Sec. IV and for the structural and elastic properties
in Sec. V. Finally, Sec. VI concludes the paper.

II. ALLOY STATISTICS AND THERMODYNAMICS

A. Cluster expansion for wurtzite and rocksalt structures

We study pseudobinary alloys AxB1−xC with N atoms of
type C on the anion sublattice and N atoms of type A or B on
the cation sublattice. Within a cluster-expansion
method,29–32,34 the macroscopic alloy is divided into an en-
semble of M clusters consisting of 2n atoms �n anions and n
cations� each. The total number of cations or anions is then
given by N=nM.

From combinatorics, it follows that, for a given crystal
structure, there are 2n different possibilities of arranging A-
or B-type atoms on the n cation sites of one cluster �the
occupation of the anion sublattice is fixed�. Due to the sym-
metry of the crystal lattice, the clusters can be grouped in
J+1 different classes, with J depending on the actual crystal
structure. Each class j�j=0, . . . ,J� contains gj clusters of the
same total energy � j, with the degeneracy factors gj fulfilling
the relation � jgj =2n.

To each macroscopic alloy, one can assign a cluster set
�M0 ,M1 , . . . ,MJ� which describes how many clusters of each

class occur in the alloy. A single class j contributes to the
macroscopic alloy with its cluster fraction xj that is defined
by xj =Mj /M. The xj fulfill the constraint,

�
j=0

J

xj = 1, �1�

which stems directly from the relation M =� jMj for the clus-
ter set. The n cation sites of each cluster are occupied with nj
atoms of species A and �n−nj� atoms of species B. Since the
molar fraction of A atoms for the entire alloy AxB1−xC is
fixed by x, the cluster fractions xj have to obey the second
constraint,

�
j=0

J

njxj = nx . �2�

Using such a cluster expansion, any macroscopic alloy can
be built from the microscopic clusters, each of which con-
tributes with its cluster fraction. Consequently, within this
framework each property P of the macroscopic system can
be traced back to the respective properties Pj of the clusters.
Given the weights xj�x ,T� for an alloy of a certain composi-
tion x at a temperature T and the values Pj of the property for
each cluster, one can calculate the property P�x ,T� for the
alloy using the Connolly-Williams method,30,38

P�x,T� = �
j=0

J

xj�x,T�Pj . �3�

With this approach, structural, elastic, and thermodynamic
properties, including lattice parameters and bulk moduli can
be accessed.

Both the MgxZn1−xO alloy and the CdxZn1−xO alloy con-
sist of two monoxides, which show different equilibrium lat-
tice structures: MgO and CdO crystallize in the cubic rs
phase while the equilibrium structure of ZnO is the hexago-
nal wz phase under ambient conditions. In this work, we
follow previous argumentations35,39 that it is sufficient to in-
clude next-nearest-neighbor correlations to capture large
parts of the physics involved in the problem. Consequently,
we use 16-atom cluster cells �i.e., n=8� and assume that
possible correlations between the different clusters are small.

While we rely on the cluster expansion for the wz struc-
ture which is described in Ref. 35, we present a new one for
alloys with rs crystal structure in this work. The correspond-
ing unit cells and the labeling of the cation positions for both
types, wz and rs clusters, are illustrated in Fig. 1. In Table I,
we give the number nj of A cations, the degeneracy factors
gj, and one representative of the symmetry-equivalent clus-
ters for each class j �characterized by the cation sites that are
occupied with A atoms�. The degeneracy gj for each class as
well as the total number of classes J+1 do not only depend
on the number of atoms in the clusters but also on the actual
point group of the crystal. For n=8, we obtain 22 classes in
the wz case and 16 classes for the rs structure �see Table I�.
Taking into account the degeneracies gj, a total of 256 clus-
ters per crystal structure are studied for each pseudobinary
material system.
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B. Generalized quasichemical approximation

In the framework of the GQCA,29–32,34 the cluster frac-
tions are determined by a minimization of the Helmholtz free

energy F�x ,T�. We restrict the discussion to the mixing con-
tribution �F to the free energy,

�F�x,T� = �U�x,T� − T�S�x,T� . �4�

The mixing contribution to the internal energy �U�x ,T� is
calculated as the sum over the contributions from the M
clusters and is referenced to the value of U of an alloy con-
sisting only of the two binary end components AC and BC,

�U�x,T� = M��
j=0

J

xj� j − �x�J + �1 − x��0�	
=M�

j=0

J

�� jxj . �5�

Here we introduce the definition of the excess energy �� j for
the class j,

�� j = � j − 
nj

n
�J +

n − nj

n
�0� . �6�

For the calculation of the free energy, Eq. �4�, or thermo-
dynamic properties derived thereof, an expression for the
configurational �or mixing� entropy has to be found.30 To
evaluate the Boltzmann definition of the entropy, �S�x ,T�
=kB ln W, one has to give an expression for the number of

TABLE I. Cluster classes for 16-atom cells in wz and rs crystal structure. For each class j, the number nj

of A cations, the degeneracy gj of the class and the cation sites occupied with A-type atoms �for one
representative of the class� are given.

wz rs

j nj gj A atoms j nj gj A atoms

0 0 1 22 0 1

1 1 8 1 23 1 8 1

2 2 12 1,2 24 2 24 1,2

3 2 12 1,5 25 2 4 4,5

4 2 4 1,8 26 3 32 1,2,3

5 3 8 1,2,3 27 3 24 1,4,5

6 3 24 1,2,7 28 4 8 1,2,3,4

7 3 24 1,2,5 29 4 8 1,2,3,5

8 4 2 1,2,3,4 30 4 48 1,2,4,5

9 4 8 1,2,3,5 31 4 6 3,4,5,6

10 4 24 1,2,4,5 32 5 32 1,2,3,4,5

11 4 6 1,2,5,6 33 5 24 1,3,4,5,6

12 4 6 1,2,7,8 34 6 24 1,2,3,4,5,6

13 4 24 1,2,5,8 35 6 4 2,3,4,5,6,7

14 5 24 3,4,6,7,8 36 7 8 1,2,3,4,5,6,7

15 5 24 3,4,5,6,8 37 8 1 1,2,3,4,5,6,7,8

16 5 8 4,5,6,7,8

17 6 4 2,3,4,5,6,7

18 6 12 2,3,4,6,7,8

19 6 12 3,4,5,6,7,8

20 7 8 2,3,4,5,6,7,8

21 8 1 1,2,3,4,5,6,7,8

(a)

1 2
3

4

5
678

(b)
1

2
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4

76 8

FIG. 1. �Color online� Illustration of atomic sites in the 16-atom
clusters of �a� wurtzite and �b� rocksalt structure. Anions �C atoms�
are depicted in blue �small�, cations �A or B atoms� in red �large�.
White atoms represent the surrounding lattice and are not part of
the 16-atom clusters. The denotation 1–8 of the cations is used in
Table I.
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possible configurations W. Given a cluster expansion and,
therefore, a set of cluster fractions �xj� that fulfills the con-
straints �1� and �2�, W describes the number of possible
atomic configurations in the entire alloy, i.e., W counts all
possible ways of arranging the NA A atoms and NB B atoms
for one given set �xj� on the N=NA+NB cation sites. To
determine W, the number of ways of arranging the
M0 ,M1 , . . . ,MJ clusters to form the alloy, M ! /� jMj!, has to
be multiplied by the number of possibilities to arrange the
cations in each cluster. Since one cluster of class j can be
occupied by cations in gj ways, all Mj clusters lead to gj

Mj

possibilities. Taking into account all classes j one ultimately
obtains

W =
M!

� j=0

J
Mj!

· �
j�=0

J

g
j�

Mj�. �7�

Using this expression for W and the definition xj =Mj /M,
one finds for the mixing entropy �S in the Stirling limit,

�S�x,T� = − kBM�
j=0

J

xj ln
 xj

gj
� . �8�

Introducing the ideal cluster fractions of a strict-regular
solution34 �see Sec. II C�,

xj
0 = gjx

nj�1 − x�n−nj , �9�

the mixing entropy can be rewritten into30,34

�S�x,T� = − kB�N�x ln x + �1 − x�ln�1 − x��

+ M�
j=0

J

xj ln
 xj

xj
0�	 . �10�

Although the expressions for W according to Eq. �7� and the
one derived in Ref. 30 differ, Eq. �10� shows that they both
lead to the same entropy in the Stirling limit.

Equations �5� and �8� fully determine the Helmholtz mix-
ing free energy as a function of x and T, given that the cluster
fractions xj are known for x and T. In the GQCA, the xj are
determined by the requirement that �F�x ,T� assumes a mini-
mum with respect to the cluster distribution, i.e.,
��F�x ,T� /�xj =0. Hence, the Lagrange formalism with the
constraints �1� and �2� yields

xj
GQCA�x,T� =

gj�
nje−���j

� j�=0

J
gj��

nj�e−���j�
�11�

whereas �=1 /kBT. The parameter � has to be determined
from the condition that the xj

GQCA obey the constraint �2�.
The cluster fractions xj

GQCA according to Eq. �11� describe
the probability for the occurrence of each cluster class j in an
alloy which has been prepared under thermodynamic equi-
librium conditions that minimize the free energy.

Since we study two cases, isostructural �wz or rs only� as
well as heterostructural �combined wz and rs� alloys, we dis-
tinguish three situations: �i� wz clusters only, �ii� rs clusters
only, or �iii� simultaneous occurrence of wz and rs clusters.

Depending on the clusters included in the calculation, the
value for J has to be set to J=21, 15, or 37 �see Table I� and
the minimization of �F has to be performed for given x and
T accordingly, which leads, via Eq. �11�, to the correspond-
ing xj

GQCA for each case.

C. Strict-regular solution and microscopic decomposition limit

In the literature, several techniques for the deposition of
MgxZn1−xO films are reported, e.g., pulsed laser deposition
�PLD� with growth temperatures of 950,…, 1050 K,10

radio-frequency magnetron sputtering at 700 K,40 and reac-
tive electron-beam evaporation at a substrate temperature
of 550 K.21 Similar techniques have been applied for
CdxZn1−xO layers, however, at much lower substrate tem-
peratures, e.g., MBE with a growth temperature as low as
450 K,12 �plasma-enhanced� MOCVD at a growth tempera-
ture of 625 K,13,24 or PLD at 700 K.23 Subsequent repeated
temper steps are reported in some cases. The films are typi-
cally deposited on c-plane �0001� sapphire but also a-plane
sapphire or more exotic substrates have been used. There-
fore, the respective experimental situation suggests the
studying of certain nonequilibrium preparation conditions,
for which the actual cluster statistics may be modified by
kinetic barriers, frozen high-temperature states, as well as
interface or surface influences. In order to simulate a depen-
dence of the cluster distribution on the preparation condi-
tions we study two limiting cases:

�i� the strict-regular solution �SRS� model.34 In this case,
the ideal cluster fractions xj

0 according to Eq. �9� are used
which arise from a purely stochastic distribution of the clus-
ters. These xj

0 do neither depend on the temperature nor the
clusters’ excess energies but are only determined by x and nj.
The number W is then simply given by all possible arrange-
ments of NA=xN A atoms and NB= �1−x�N B atoms on the
N=NA+NB cation sites of the alloy, i.e.,

WSRS =
N!

NA!NB!
. �12�

In the Stirling limit, the mixing entropy in this case reduces
to

�SSRS�x� = − kBN�x ln x + �1 − x�ln�1 − x�� . �13�

The ideal xj
0 according to Eq. �9� and �SSRS can be inter-

preted as the high-temperature limit of the GQCA since for
increasing temperatures, the xj

GQCA approach the xj
0 and, con-

sequently, �S �cf. Eq. �8�� approaches �SSRS.
�ii� The microscopic decomposition model �MDM�. In

this limiting case, the cations of type A �B� are more likely to
occur close to cations of type A �B�. Consequently, only the
clusters representing the two binary components AC and BC
are allowed, with xM being the number of AC clusters and
�1−x�M the number of BC clusters. This is equivalent to
merely a linear interpolation between the binary end compo-
nents and, therefore, the results are equal to predictions from
Vegard’s rule.30,41 Furthermore, for positive excess energies
�� j �cf. Eq. �6��, the xj

MDM represent the low-temperature
limit of the GQCA. The cluster fractions for the MDM are
given by
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xj
MDM = 
1 − x for j = 0

x for j = J

0 otherwise.
� �14�

The number of atomic configurations follows immediately
from Eq. �7� by taking into account only the two clusters
with j=0 and j=J, i.e.,

WMDM =
M!

�xM�!��1 − x�M�!
. �15�

Using the xj
MDM, we obtain for the mixing entropy

�SMDM�x� = − kBM�x ln x + �1 − x�ln�1 − x��

=
1

n
�SSRS�x� , �16�

i.e., a reduced configurational entropy. In the MDM, the re-
sulting length scale of decomposition of the alloy into the
binary compounds is not well defined as usual in a thermo-
dynamic approach. The minimum length scale is given by
the assumed cluster size itself. Whether clusters of the same
type �AC or BC� build larger regions of pure AC and BC
material on a mesoscopic or macroscopic length scale de-
pends on the cluster interaction �which is not taken into ac-
count�. In general, the MDM describes alloys that have been
prepared under conditions where mixing does not lead to a
gain of internal energy. Indeed, in the MDM description one
finds from Eq. �5� �U�x�=0 for the mixing contribution to
the internal energy.

III. QUANTUM-MECHANICAL CALCULATIONS
OF CLUSTERS

A. Computational methods

The statistical methods introduced in Sec. II trace the
properties of an alloy of composition x at temperature T back
to the corresponding properties of individual clusters using
Eq. �3�. Therefore, the respective calculations have to be
performed for each of the 22 �wz� and 16 �rs� clusters of
MgxZn1−xO and CdxZn1−xO.

Ground-state properties, such as the total energy of a clus-
ter or its structural properties, are well described within
density-functional theory42,43 applying the supercell method,
where a cluster is identified with the unit cell of an artificial
crystal. Explicit calculations are performed using the Vienna
ab initio simulation package �VASP�.44 For the semilocal
generalized-gradient approximation �GGA� to the exchange
and correlation �XC� potential in the Kohn-Sham equation,43

we rely on the PW91 parametrization as suggested by Per-
dew and Wang.45,46 Although such a semilocal treatment of
XC cannot correctly describe excitation properties �such as
quasiparticle energies or excitonic effects47,48�, it allows for a
very good description of lattice constants and cohesive ener-
gies. For the oxides studied in this work, the GGA tends to
slightly underestimate binding energies and slightly overes-
timate lattice constants.15 However, these ground-state prop-
erties are not systematically improved by a different treat-

ment of XC, for instance, by adding an additional on-site
Hubbard interaction U �Ref. 49� or a certain amount of Fock
exchange.50

The electron-ion interaction is modeled within the
projector-augmented wave method.51,52 We treat the Mg 2p
and Mg 3s as well as the O 2s and O 2p electrons as valence
electrons. For Zn and Cd, the Zn 3d and Cd 4d states have to
be included as valence states, respectively, together with the
Zn 4s and Cd 5s electrons. The electronic wave functions are
expanded into plane waves up to a cutoff energy of 450 eV
and the Brillouin zone is sampled by 2�2�2 �wz� or
4�4�4 �rs� Monkhorst-Pack k points.53 We checked that
these parameters give results for the total energies of the
clusters that are converged within 0.08%. This corresponds
to a very small level of inaccuracy, especially since the total
energies of the different binary end components differ by at
least 10% of their total energy.

In order to obtain the equilibrium values for the cell vol-
umes, total energies, and bulk moduli, we minimize the total
energy for several cell volumes and fit the resulting volume
dependence of the total energy to the Murnaghan equation of
state.54 For each cluster geometry, we compute fully relaxed
atomic positions, i.e., optimized lattice constants and internal
cell parameters, ensuring that the forces acting on the ions
are well below 5 meV /Å.

B. Results

To describe the geometry of the two different crystal
structures on the same footing, we discuss the average
cation-cation �second-nearest neighbor� distance d2. The re-
sults for the cluster energies � j, the cation-cation distances
d2,j �averaged over all cation-cation distances of one cluster�,
the wz lattice parameters cj of the cluster cell and uj �aver-
aged over all u’s of one cluster�, the cell volumes Vj, and the
bulk moduli B0,j are listed in Table II for all wz cluster cells
and Table III for all cluster classes of the rs crystal structure.

The energies of the clusters � j in Tables II and III show an
almost linear variation with the number nj of Mg �Cd� atoms,
decreasing �increasing� from pure ZnO to pure MgO �CdO�.
Small negative �positive� nonlinear deviations appear for
Mgnj

Zn8−nj
O8 �Cdnj

Zn8−nj
O8� with absolute values of a few

millielectron volt �tens of an electron volt�.
The cation-cation distances d2,j show a weak decrease

�strong increase� with the number nj of Mg �Cd� atoms as
expected from the corresponding values for the binary end
components. While the nearest-neighbor distances or bond
lengths �not listed in Tables II and III� of the ZnO-MgO
system decrease only very slightly from dZn-O
�2.002 /2.167 Å to dMg-O�1.997 /2.128 Å for wz/rs, we
find a completely different situation for the ZnO-CdO sys-
tem, where the bond lengths dCd-O�2.230 /2.388 Å are
rather different from dZn-O. For the bulk moduli B0,j, we ob-
serve a decrease with increasing number nj of Mg or Cd
atoms, independent of the crystal structure. This trend fol-
lows the behavior of the covalent radii of the cations that
also show an anomalous trend of 1.36, 1.25, and 1.48 Å
along the row Mg, Zn, and Cd.55 For our calculated lattice
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parameters, equilibrium volumes, and bond lengths, we find
very good agreement with a similar study.36 However, the
deviations are remarkable for the total energies and, conse-
quently, lead to different results for, e.g., the mixing free

energy. We attribute these differences to the use of the local-
density approximation �LDA� to XC, and to the neglect of
the Zn 3d and Cd 4d electrons as valence electrons in
Ref. 36.

TABLE II. Cluster energies per cation-anion pair � j, cation-cation distances d2,j, lattice parameters cj and
uj, volume per cation-anion pair Vj, and bulk moduli B0,j for 16-atom clusters of Mgnj

Zn8−nj
O8 �first line of

each class� and Cdnj
Zn8−nj

O8 �second line of each class� in wz structure.

Class j
� j

�eV/pair�
d2,j

�Å�
cj

�Å� uj

Vj

�Å3�
B0,j

�GPa�

0 −9.05 3.270 5.303 0.378 24.72 141.0
1 −9.41 3.268 5.288 0.380 24.68 137.5

−8.87 3.315 5.368 0.379 25.75 121.3
2 −9.76 3.270 5.275 0.381 24.73 131.6

−8.69 3.359 5.452 0.378 26.80 110.2
3 −9.76 3.266 5.275 0.381 24.64 131.3

−8.70 3.357 5.405 0.382 26.74 112.7
4 −9.76 3.266 5.271 0.381 24.64 131.1

−8.71 3.358 5.445 0.379 26.77 112.5
5 −10.12 3.265 5.243 0.383 24.61 121.5

−8.51 3.408 5.565 0.374 27.98 114.2
6 −10.12 3.265 5.252 0.382 24.60 121.6

−8.55 3.405 5.508 0.380 27.91 117.2
7 −10.12 3.265 5.260 0.382 24.60 121.4

−8.54 3.404 5.459 0.384 27.87 116.0
8 −10.47 3.264 5.211 0.385 24.57 118.4

−8.33 3.455 5.705 0.368 29.16 103.7
9 −10.47 3.264 5.235 0.384 24.58 118.1

−8.37 3.451 5.542 0.383 29.03 104.0
10 −10.47 3.264 5.232 0.384 24.57 118.0

−8.38 3.452 5.591 0.378 29.07 105.9
11 −10.47 3.264 5.246 0.383 24.58 117.3

−8.39 3.447 5.467 0.390 28.89 104.1
12 −10.47 3.263 5.233 0.384 24.57 118.8

−8.41 3.450 5.583 0.380 29.03 107.6
13 −10.47 3.264 5.241 0.383 24.57 117.6

−8.40 3.449 5.531 0.384 28.98 105.1
14 −10.82 3.261 5.216 0.385 24.52 116.8

−8.24 3.495 5.576 0.387 30.13 95.9
15 −10.82 3.261 5.210 0.385 24.51 116.7

−8.25 3.497 5.636 0.381 30.22 98.2
16 −10.82 3.262 5.198 0.386 24.53 114.7

−8.21 3.501 5.711 0.374 30.33 96.3
17 −11.17 3.260 5.183 0.387 24.48 113.2

−8.11 3.544 5.714 0.382 31.48 98.4
18 −11.17 3.260 5.191 0.387 24.49 110.3

−8.10 3.542 5.647 0.387 31.38 96.6
19 −11.17 3.261 5.182 0.387 24.50 109.8

−8.08 3.546 5.727 0.380 31.51 96.0
20 −11.52 3.259 5.158 0.389 24.46 110.5

−7.95 3.592 5.762 0.384 32.74 92.4
21 −11.86 3.258 5.120 0.391 24.41 104.4

−7.82 3.640 5.841 0.384 34.10 90.6
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IV. THERMODYNAMIC PROPERTIES

By including the temperature-dependent mixing entropy,
we also obtain a temperature dependence of the cluster frac-
tions and, therefore, of the derived properties. In this work,
we discuss the alloy properties at two selected temperatures,
�i� room temperature �T=300 K� where many measurements
are performed and �ii� an exemplary growth temperature of
T=1100 K.

A. Excess energies

The excess energy �cf. Eq. �6�� �� j represents the energy
of formation of a certain Xnj

Znn−nj
On cluster in the wz or rs

structure with respect to ZnO and XO �X=Mg and Cd� in the

respective crystal structure. They are fundamental quantities
for the GQCA since they ultimately determine the cluster
fractions �see Eq. �11�� and, therefore, the alloy statistics. In
Fig. 2, the excess energies are plotted for both material com-
binations, i.e., ZnO-MgO and ZnO-CdO. Whereas in Figs.
2�a� and 2�b�, the �� j for wz and rs structure are shown, we
visualize the energetic difference of these two lattice struc-
tures by plotting the �� j using the value of �0 for wz-ZnO
and �J for rs-XO in Figs. 2�c� and 2�d�.

For MgZnO clusters �cf. Fig. 2�a��, we find negative ex-
cess energies �per anion-cation pair� with absolute values of
less than 20 meV for both crystal structures. Contrary, for
CdZnO clusters �cf. Fig. 2�b�� the excess energies are posi-
tive for both polymorphs and by one order of magnitude
larger than the ones for MgZnO. As a consequence, in the
isostructural limit with only a fourfold �wz� or a sixfold �rs�
coordinated bonding configuration, we predict that mixing is
possible for the ZnO-MgO system independent of the com-
position x, temperature T, and the boundary condition that
fixes the cluster fractions. In the case of the ZnO-CdO sys-
tem with its large difference of the bond lengths dZn-O /dCd-O
and, hence, a remarkable strain of a bond in the environment
of the other cation species, the situation is different and will
be discussed in detail in Sec. IV C

Due to the changed reference energy of the excess ener-
gies in Fig. 2�c� and their small absolute values in the case of
ZnO-MgO, we find an almost linear variation between the
end points. The crossing point near nj /n�2 /3 indicates that
for small Mg fractions, the fourfold coordination is more
stable while for larger Mg fractions, the sixfold one seems to
be energetically favored. This is in agreement with the oc-
currence of the cubic crystal structure above a composition
of x�0.67 in PLD samples.18 However, there are also
experimental21 or other theoretical results16,36,37contradicting
our findings. More precisely, Refs. 16 and 36 find for rs-ZnO
and wz-ZnO almost the same energy difference as we do for
rs-MgO and wz-MgO and vice versa. There are strong indi-
cations that the use of the LDA instead of the GGA can cause
such deviations of the total-energy differences. Our presump-
tion is supported by a comparison to other GGA calculations
that confirm our result of 0.3 eV as the energy difference
between rs-ZnO and wz-ZnO as well as the 0.15 eV between
rs-MgO and wz-MgO.56,57 LDA values that have been re-
ported seem to lead to opposite differences for MgO and
ZnO.16,36,37,58,59 In addition, Fan et al.36 do not include the d
electrons of Zn or Cd in their calculations which may further
influence the rs-wz splittings.

We observe a different situation for the ZnO-CdO system
�cf. Fig. 2�d�� since the absolute values of the excess energies
are comparable to the energy differences of the rs and wz
polymorphs. Consequently, the deviations from the linear in-
terpolation between the end components are much larger.
Furthermore, the wz and rs polymorphs of CdO are energeti-
cally much closer to each other than the corresponding ZnO
polymorphs. Merely plotting the excess energies �see
Fig. 2�d�� suggests a wide range up to nj /n�0.95 for
the stability of wz which contradicts the majority of
experiments.12,13,23,24,60 Taking the cluster statistics into ac-
count, we discuss this issue in more detail later �cf. Secs.
IV C and IV D�.

TABLE III. Cluster energies per cation-anion pair � j, cation-
cation distances d2,j, volume per cation-anion pair Vj, and bulk
moduli B0,j for 16-atom clusters of Mgnj

Zn8−nj
O8 �first line of each

class� and Cdnj
Zn8−nj

O8 �second line of each class� in rs structure.

Class j
� j

�eV/pair�
d2,j

�Å�
Vj

�Å3�
B0,j

�GPa�

0 −8.75 3.065 20.36 166.3

1 −9.16 3.059 20.23 165.4

−8.57 3.111 21.29 162.1

2 −9.57 3.052 20.09 162.7

−8.42 3.152 22.14 154.9

3 −9.57 3.053 20.11 162.9

−8.34 3.165 22.43 155.4

4 −9.98 3.044 19.95 160.9

−8.31 3.189 22.92 147.5

5 −9.98 3.045 19.97 155.0

−8.24 3.202 23.21 147.3

6 −10.39 3.037 19.81 158.5

−8.22 3.224 23.69 144.9

7 −10.39 3.037 19.80 158.7

−8.22 3.224 23.70 144.9

8 −10.39 3.038 19.83 159.0

−8.15 3.236 23.95 145.0

9 −10.39 3.039 19.85 159.2

−8.09 3.247 24.22 144.3

10 −10.80 3.030 19.67 156.7

−8.09 3.267 24.66 138.4

11 −10.80 3.031 19.70 139.5

−8.03 3.280 24.95 132.5

12 −11.20 3.023 19.54 156.3

−7.99 3.315 25.75 114.1

13 −11.21 3.024 19.56 157.4

−8.00 3.344 26.39 101.8

14 −11.61 3.016 19.40 153.5

−7.90 3.343 26.42 130.8

15 −12.01 3.009 19.26 152.0

−7.84 3.378 27.25 126.9
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B. Internal energy and entropy

For a general discussion of the thermodynamic trends re-
sulting from the three different statistics, we compare the
contributions �U �Eq. �5�� and �S �Eq. �10�� to the mixing
free energy �F as calculated from the GQCA with results
obtained using the ideal weights and the weights from the
MDM for wz-MgxZn1−xO.

From the mixing contribution to the internal energy
�U�x ,T� of wz-MgxZn1−xO, it can be seen �cf. Fig. 3�a�� that
for low temperatures �T=30 K� only the clusters with the
lowest energies contribute in the GQCA. For higher tempera-
tures �T=300 K�, the weights of clusters with higher excess
energies are larger. The SRS model finally represents the
high-temperature limit of the GQCA in which all wz clusters
contribute. The MDM does not lower the internal energy of
the system.

In Fig. 3�b�, the corresponding results for the mixing en-
tropy �S�x ,T� are shown. Again, the MDM is the most
trivial case with the smallest entropy term since only two
clusters contribute. The SRS model is obviously maximizing
the entropy which is consistent with what we expect from a
high-temperature limit, i.e., the high-temperature curve of
the GQCA approaches the SRS limit. The low-temperature
curve of the GQCA shows an interesting behavior since the
entropy in this case clearly features pronounced minima for
compositions x where only single clusters substantially con-
tribute.

C. Mixing free energy

The Gibbs free energy is the thermodynamic potential
which describes the equilibrium of a system for fixed tem-
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FIG. 2. �Color online� Excess energies per cation-anion pair �� j of the ��a� and �c�� Mgnj
Znn−nj

On and ��b� and �d�� Cdnj
Znn−nj

On clusters
computed from Eq. �6�. The excess energies are shown for the rocksalt �red triangles� and the wurtzite �blue circles� crystal structures. In
subfigures �a� and �b� �subfigures �c� and �d��, the �0 and �J of the same crystal structure �equilibrium crystal structure� have been used as
level of reference. The lines linearly connect the end points wz-ZnO and wz-XO �solid blue� as well as rs-ZnO and rs-XO �dashed red�,
X=Mg and Cd.
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FIG. 3. �Color online� Mixing contribution to the �a� internal
energy �U�x ,T� and �b� mixing entropy �S�x ,T� for MgxZn1−xO in
wz structure. The solid curves are obtained using the GQCA cluster
fractions for T=30 K �blue� and T=300 K �red�. The dotted curves
result from the MDM and the dashed-dotted curves are obtained
using the ideal cluster fractions. For comparison, the blue dots rep-
resent the excess energies computed from Eq. �6�. All quantities are
normalized to cation-anion pairs.

SCHLEIFE et al. PHYSICAL REVIEW B 81, 245210 �2010�

245210-8



perature and pressure. At low pressures of about 1 atm, the
difference between the Gibbs free energy and the Helmholtz
free energy vanishes. Therefore, the Helmholtz mixing free
energy is used as the central thermodynamic quantity that
governs, at least for solids and low pressures, the equilibrium
alloy state and, therefore, the cluster fractions xj

GQCA.
In Fig. 4, the mixing free energy �F�x ,T� for MgxZn1−xO

and CdxZn1−xO alloys in the wz and the rs crystal structures
is plotted versus composition x. For MgxZn1−xO, it is obvious
that �F�0 for all x and T, which is, according to Eqs. �4�
and �5�, a direct consequence of the negative excess energies
for Mgnj

Znn−nj
On clusters �cf. Fig. 2�a��. For that reason, all

three statistics agree in predicting wz-MgxZn1−xO and
rs-MgxZn1−xO to be a random alloy without a miscibility
gap,34 independent of x and T. There is no tendency for bin-
odal or spinodal decomposition of the alloy. The results us-
ing the GQCA cluster weights and the ones from the SRS
model are almost identical while the energy gain is smaller
within the MDM.

For CdxZn1−xO, the behavior of �F is qualitatively differ-
ent as can be seen from Fig. 4�b�. It shows that for T
=300 K and both crystal structures, the GQCA results agree
very well with the MDM, i.e., we find the alloy being almost

entirely decomposed into the binary clusters. For the higher
temperature of T=1100 K, the GQCA result approaches the
SRS curve for the wurtzitic alloy, especially for x�0.1 and
x�0.8. However, for rs-CdxZn1−xO at T=1100 K, the
GQCA curve still agrees with the MDM. In this case, the
system has a strong tendency for decomposition into the bi-
nary materials and the SRS limit can only be reached at very
high temperatures. Besides, for CdxZn1−xO, the �F curves
versus x are rather asymmetric for the SRS and show minima
and inflection points with positions that strongly depend on
the temperature and the local crystal structure. This is an
indication of a phase transition between random and phase-
separated alloys and will be discussed as such later.

In the following, we compare to free-energy curves that
are computed using the energies of the respective equilib-
rium crystal structures �rs-MgO, wz-ZnO, and rs-MgO� as
level of reference, in contrast to the results in Fig. 4 where
the energies of the binary components in the same crystal
structure have been used. For MgxZn1−xO, the mixing free-
energy curves for the wz alloys and the rs alloys in Fig. 5�a�
intersect at x�0.67, independent of the temperature. We in-
terpret this as a tendency for a transition from preferred four-
fold coordination �wz� to preferred sixfold coordination �rs�
at that composition under equilibrium conditions. In addi-
tion, the difference of the mixing free energy per cluster of
the heterostructural alloys and that of the respective isostruc-
tural cases exceeds 25 meV, i.e., kBT at room temperature,
for approximately 0.10	x	0.98 �0.28	x	0.93� at T
=300 K �T=1100 K�. The additional degree of freedom of
varying also the atomic coordination leads to the lowest mix-
ing free energy �see Fig. 5�a��. Hence, for these values of x
both, rs as well as wz clusters, significantly contribute to the
alloy material.

The same tendencies have been observed in experimental
studies. Minemoto et al.61 �Vashaei et al.62� found predomi-
nantly wz structure below x	0.46 �x	0.34� and mainly rs
structure for x
0.62 �0.65	x	0.97�. Ohtomo et al.63 re-
port on the occurrence of an impurity phase above Mg con-
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FIG. 4. �Color online� Mixing free energy �F�x ,T� of �a�
MgxZn1−xO and �b� CdxZn1−xO alloys with fixed sixfold �rs� or
fourfold �wz� bonding configuration versus composition x. The
solid curves are obtained using cluster fractions from the GQCA.
The dotted curves result from the MDM and the dashed-dotted
curves are obtained using the ideal cluster fractions. In each case,
we depict results for T=300 K �blue curves� and T=1100 K �red
curves�.
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FIG. 5. �Color online� Mixing free energy �F�x ,T� of �a�
MgxZn1−xO and �b� CdxZn1−xO alloys versus composition x. The
curves are obtained using the GQCA with wurtzite clusters only
�solid�, rocksalt clusters only �dashed-dotted�, or both types of clus-
ters �dashed�. In all cases, results are shown for T=300 K �blue
curves� and T=1100 K �red curves�. The equilibrium crystal struc-
tures wz �x=0� and rs �x=1� have been used as energy zero.
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centrations of x�0.33 which roughly coincides with the
point in Fig. 5�a� where the high-temperature curve for wz
structure starts to deviate from the curve for the mixed sta-
tistics. Also the x-ray diffraction measurements of thin-film
samples by Bundesmann et al.18 reveal hexagonal wz struc-
ture for x	0.53 and cubic rs structure for x
0.67. Films
grown by reactive electron-beam evaporation21 lead to hex-
agonal MgxZn1−xO up to x=0.51 and to cubic MgxZn1−xO
above x=0.55. In general, the amount of fourfold- or sixfold-
coordinated atoms cannot be directly derived from the mix-
ing free energy and will be discussed in more detail in Sec.
IV D

In the case of the CdxZn1−xO alloys, we study the mixing
free energy in Fig. 5�b� where we observe a crossing of the
curves for the isostructural alloys roughly at a Cd content of
x�0.95. Moreover, we find that the result from the mixed
statistics differs less than 25 meV �per cluster� from the
curve for the pure wz structure up to compositions x of about
0.17 �0.59� for T=300 K �T=1100 K�. The reason for that
behavior is the small energy difference between the rs-CdO
and the wz-CdO phase15 �see Tables II and III�.

Experimental studies of CdxZn1−xO show an ambivalent
picture while two groups report very low thermodynamic
solubility limits23 of only x�0.07 or phase separation at
even lower Cd concentrations,24 another group observed Cd
concentrations up to x=0.32 in samples produced by means
of highly nonequilibrium MBE.12 Unfortunately, they have
not tried for higher concentrations. More importantly, the wz
crystal structure has also been found for plasma-enhanced
MOCVD layers13 up to x=0.697. Their result is confirmed
by Ishihara et al.60 who report a transition from wz to rs
structure at x=0.7 for films deposited by MOCVD. Appar-
ently, the change in the crystal structure occurs at lower Cd
concentrations than we predicted from the intersection of the
�F curves for wz and rs in Fig. 5�b�. On the other hand, the
high-temperature curve from the mixed statistics shows sig-
nificant deviations from the pure wz statistics above Cd con-
tents of about 0.7 which may explain the experimental
findings.60

For a detailed discussion of the mixed statistics we
present in Fig. 6 the results for the mixing free energy ob-
tained from the statistics with wz and rs clusters. In this plot,
we use again the equilibrium crystal structures for each ma-
terial as level of reference for the mixing free energies at x
=0 and x=1. Since the ideal cluster fractions xj

0 according to
Eq. �9� do not depend on the cluster energies, both the sum
of the xj

0 for all wz clusters and also of all rs clusters give the
same total weight of 0.5. Consequently, at x=0 and x=1
clusters of both crystal structures contribute equally, albeit,
we want to take this situation into account due to possible
nonequilibrium growth conditions. Therefore, we set the
mixing free energies at x=0 and x=1 to zero for each curve
resulting from the SRS model in Fig. 6 since otherwise,
�F�x=0,T��0 and �F�x=1,T��0 hold for temperatures
T�0 K due to the weights of the SRS model.

First of all, Fig. 6 points out that the GQCA and the MDM
coincide for both materials at low temperatures. Contrary, the
SRS model and the GQCA result in a remarkable difference
independent of the temperature. This is not surprising since
the SRS model neglects the large energetic differences be-

tween the two crystal structures by merely assigning the
ideal weights to the clusters. While we find for MgxZn1−xO,
which shows negative excess energies, that the ideal cluster
fractions are energetically favored over the ones resulting
from GQCA or the MDM �cf. Fig. 6�a��, the opposite is true
for CdxZn1−xO �cf. Fig. 6�b��, where the excess energies are
positive.

D. Phase transitions and phase diagram

For a better understanding of the structural composition of
the alloys as a function of x and T, we calculate the contri-
butions of wz and rs clusters to the mixed statistics results.
For that purpose we define the wz character xwz and the rs
character xrs of the alloy as the sum over the corresponding
weights, i.e.,

xwz = �
j=0

21

xj and xrs = �
j=22

37

xj , �17�

with xwz+xrs=1. For given composition x, temperature T,
and statistical model xwz �xrs� measures the relative contribu-
tion of clusters with fourfold �sixfold� atomic coordination to
the studied �nondecomposed� XxZn1−xO sample �X=Mg and
Cd�. The results for xwz and xrs as a function of x and T are
shown for both pseudobinary materials in Fig. 7. This figure
clarifies how the dominating crystal structure in the alloy
depends on the thermodynamic conditions as well as the re-
spective cluster statistics �GQCA, SRS, and MDM�. As dis-
cussed before, the SRS model for the cluster fractions gives
rise to equal contributions of rs and wz clusters �see Fig. 7�.
We confirm our discussion of the results for the mixing free
energy by finding the GQCA curves close to the MDM re-
sults for both materials at room temperature. As expected,
higher preparation temperatures tend to move the intersec-
tion xwz=xrs to larger Mg or Cd molar fractions x. More
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FIG. 6. �Color online� Mixing free energy �F�x ,T� of �a�
MgxZn1−xO and �b� CdxZn1−xO alloys versus composition x for T
=300 K �blue� and T=1100 K �red�. The solid curves are com-
puted using cluster fractions from the GQCA. The dotted curves are
obtained for the MDM while the dashed-dotted curves are calcu-
lated using the ideal cluster fractions. All curves result from the
combined statistics with both wurtzite- and rocksalt-type clusters.
The respective composition end points have been used as zero �see
text�.
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specifically, we find that point at about x=0.5 �T=300 K�
and x=0.6 �T=1100 K� for MgxZn1−xO while the tempera-
ture dependence is more pronounced for CdxZn1−xO where
the intersection for T=1100 K occurs at about x�0.87.
Consequently, the local crystal structure and bonding con-
figuration of the CdxZn1−xO alloy depends much more on the
actual growing conditions which explains the ambivalent ex-
perimental findings for that material system.12,13,23,24,60

As discussed before, the occurrence of two pronounced
minima as well as inflection points in the curve for the mix-
ing free energy of CdxZn1−xO obtained from the SRS model
�cf. Fig. 6� is an indication for a possible phase separation.29

Due to its negative excess energies �cf. Fig. 2�a��, the
MgxZn1−xO alloy does not show such a behavior. To study
the consequences we construct the common tangent line to
the free-energy curves obtained from the SRS model for
CdxZn1−xO alloys at several T. The resulting tangent points
x1=x1�T� and x2=x2�T� describe the boundaries of the mis-
cibility gap and their variation with the temperature defines
the binodal line in the T-x phase diagram shown in Fig. 8.
From the maximum of the resulting T-x curves, we find the
critical parameters Tcrit=1030 K and xcrit=0.34 for the wz
statistics as well as Tcrit=1940 K and xcrit=0.4 for the mixed
statistics. For the pure rs statistics, the critical temperature is
larger than 2500 K. Inside the miscibility gap, the alloy con-
sists of a mixture of Cdx1

Zn1−x1
O and Cdx2

Zn1−x2
O with the

mixing free energy,

�Fmix�x,T� =
x2 − x

x2 − x1
�F�x1,T� +

x − x1

x2 − x1
�F�x2,T� , �18�

which is lower than �F�x ,T�.
Furthermore, the two inflection points x1�=x1��T� and x2�

=x2��T� of the �F�x ,T� curve from the SRS model for
CdxZn1−xO �cf. Fig. 6�b�� define the spinodal curve in the
phase diagram in Fig. 8. Inside the intervals x1�x�x1� and
x2��x�x2, the alloy is metastable against local decomposi-

tion due to an energy barrier. Contrary, spontaneous decom-
position into two alloys with compositions x1 and x2 happens
within the interval x1��x�x2�.

29 The actual distribution of the
clusters depends via x1�T� and x2�T� on the composition x
and temperature T �cf. Fig. 8�.

The phase diagram in Fig. 8 suggests the speculation that
the low solubilities of rs-CdO in wz-ZnO �Refs. 23 and 24�
can be explained within the SRS model. For alloy prepara-
tion conditions that lead to a stochastic occupation of the
cation lattice sites, Fig. 8 confirms a large miscibility gap
starting at x�0.08 at T�830 K �wz clusters only�, T
�1450 K �rs and wz clusters�, or T�2070 K �rs clusters
only�.

E. Cohesive energies

From the cluster energies � j as given in Tables II and III,
we compute the cohesive energies �per cation-anion pair� by
subtracting the total energies of the spin-polarized atoms,
�Mg, �Zn, �Cd, and �O, from the ground-state energy � j of the
jth cluster, i.e.,

Ecoh,j = − � j +
nj

8
�X +

n − nj

8
�Zn + �O �19�

with X=Mg and Cd. For the binary end components, this
leads to cohesive energies of Ecoh=10.18 eV �rs-MgO�, 7.21
eV �wz-ZnO�, and 6.00 eV �rs-CdO� which are close to ex-
perimental values of 10.26, 7.52, and 6.40 eV �see compila-
tion in Ref. 15�. In Fig. 9, the averaged cohesive energies �cf.
Eq. �3�� per cation-anion pair, as computed using the cluster
weights from the different statistics, are plotted for
MgxZn1−xO and CdxZn1−xO alloys versus composition x.
From Fig. 9�a�, it immediately becomes clear that for
MgxZn1−xO the variation in the cohesive energy with the
alloy composition x is almost linear. This is due to the fact
that the variation between the different crystal structures as
well as the variation in the excess energies with x for fixed
crystal structure �cf. Fig. 2� both are small compared to the
large difference of Ecoh between ZnO and MgO. For that
reason also, the temperature variation in the GQCA results is
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not visible. Overall, neither for the rs nor the wz crystal
structure, there is a visible dependence on the actual statistics
that has been used.

For CdxZn1−xO we find from Fig. 9�b� that the results
within the GQCA and the SRS model differ. The curves from
the MDM cannot be distinguished from the low-temperature
GQCA results. For the wz crystal structure deviations result-
ing from the different statistics are small but visible. As dis-
cussed before, the mixed statistics gives rise to results that
are close to those obtained when taking only wz clusters into
account.

V. STRUCTURAL AND ELASTIC PROPERTIES

A. Fourfold bonding coordination

In Sec. IV, we found that especially for the CdxZn1−xO
system a significant fraction of the alloy locally shows the
wz crystal structure over a large composition range. For that
reason we investigate the behavior of the c lattice constant
and the u parameter as characteristic parameters of the wz
structure.

Figure 10�a� shows that in the case of MgxZn1−xO, the
results from the GQCA for both temperatures and the curve
obtained using the ideal cluster fractions almost coincide.
The two statistics give rise to slightly larger values for c than
the MDM and, therefore, also Vegard’s law, which we find to
be violated. Around x=0.5, the deviation may reach values
of about 0.5%. As can be seen in Fig. 10�a�, this leads to
large errors when the composition of an alloy is determined
by measuring the c-lattice constant and applying Vegard’s
rule.

Contrary, for CdxZn1−xO �cf. Fig. 10�b�� the curves com-
puted with the GQCA cluster fractions for high and low tem-
peratures represent the two limiting cases. While the low-

temperature curve coincides with the MDM, the high-
temperature curve is close to the results from the SRS model
and the deviations between the two cases are small.

A comparison of the values cj for the individual clusters
of both material systems shows that the variation is much
larger for Cdnj

Znn−nj
On than for Mgnj

Znn−nj
On. Overall, the

deviations from the MDM �which is equivalent to Vegard’s
law� are larger for MgxZn1−xO and we find a remarkable
bowing of the curves which renders a purely linear interpo-
lation questionable. Contrary, the bowing is smaller for
CdxZn1−xO despite the stronger deviations for individual
clusters, e.g., with nj =3, 4, or 5 Cd atoms.

In Fig. 11, we also study the influence of the cluster sta-
tistics on the internal cell parameter u of the hexagonal lat-
tice, which describes the translation of the cation sublattice
with respect to the anion sublattice along the c direction.
Again, for MgxZn1−xO there is a noticeable deviation of all
statistics �that are almost equal� from the MDM result, with a
remarkable bowing of the curves. The u values of the indi-
vidual clusters show a larger scattering for Cdnj

Znn−nj
On than

for Mgnj
Znn−nj

On. In the case of CdxZn1−xO again the low-
temperature GQCA curve coincides with the MDM result
while the high-temperature GQCA curve is close to the one
obtained using ideal cluster fractions.

B. Cation-cation distance

Both crystal structures that are taken into account to de-
scribe the pseudobinary alloy system, rs and wz, are charac-
terized by different lattice parameters. While the cubic rs
structure is described by only one lattice constant a0, there
are three independent parameters a, c, and u for the hexago-
nal wz structure which renders a universal description of the
lattice structure of the alloys more difficult. As mentioned
before, we solve this problem by restricting our discussion to
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the average cation-cation distance d2�x�. This quantity can be
defined in a unique manner even for different crystal struc-
tures and is experimentally accessible at the same time. For
the rs lattice, d2 is simply related to the lattice constant a0 by
d2=a0 /�2 and for the ideal wz lattice with c /a=�8 /3, it
holds d2=a. We average over all cation-cation distances in
one cluster to obtain the d2,j �cf. Tables II and III�. Using the
respective weights from the GQCA, the SRS model, and the
MDM, the configurational average is calculated from Eq. �3�
and the results are plotted in Fig. 12 for MgxZn1−xO and
CdxZn1−xO.

For MgxZn1−xO �cf. Fig. 12�a��, we find for the pure wz
and pure rs cluster geometries that the three alloy statistics
give almost the same results and, therefore, also agree well
with Vegard’s rule. For each fixed crystal structure, the varia-
tion in d2 versus x is small whereas d2 differs up to 8%
between the wz and the rs structure of a material. While the
GQCA results from the mixed statistics agrees well with the
MDM for T=300 K, we find significant deviations for T
=1100 K. In the high-temperature case, the cation-cation
distance in the pseudobinary alloy remains very close to the
value of the pure wz structure up to compositions of about
x�0.2 �cf. Fig. 12�a��. For higher Mg contents, d2 ap-
proaches the value of rs-MgO.

For CdxZn1−xO �cf. Fig. 12�b��, the variation in d2 is much
larger than for MgxZn1−xO since the cation-cation distance
varies much more between ZnO and CdO. The results from
all three statistics for the pure wz clusters and the pure rs
clusters agree well with Vegard’s rule except of a small de-
viation for the SRS model for rs-CdO. Again the most re-
markable change is observed for the mixed cluster expan-
sion. At room temperature, the curve connects the wz and rs
end components almost linearly. For the higher temperature
of T=1100 K, the cation-cation distance closely follows the
wz trend up to Cd concentrations of more than 0.5. Overall,
the different structural configurations can be clearly distin-
guished at fixed x via the average cation-cation distance.
When both lattice structures can occur in the alloy we even
find a more pronounced temperature dependence.

C. Bulk modulus

Besides the cation-cation distance we also study the bulk
modulus B0 for MgxZn1−xO and CdxZn1−xO using the three
statistics evolving from the cluster weights of the GQCA, the
SRS model, and the MDM. The results are plotted together
with the values for the individual clusters in Fig. 13.

For MgxZn1−xO �cf. Fig. 13�a�� in the pure rs or wz struc-
ture, the GQCA results show a temperature dependence and
also differ from the linear interpolation of the MDM whereas
the SRS curve is very close to the high-temperature result of
the GQCA. The reason for this behavior is the stronger de-
viation of the bulk moduli for the individual clusters from
the linear interpolation. As can be seen in Fig. 13�a� for the
rs structure, we find a certain cluster with an especially low
bulk modulus at x=0.625 which, therefore, coincides with
the minimum of the GQCA curves. For the GQCA results
using the mixed statistics, we find a strong temperature de-
pendence since the room-temperature curve closely follows
the MDM curve while the high-temperature result matches
the pure wz curve up to x�0.2 and then approaches the pure
rs curve at x=1.

In the case of CdxZn1−xO �see Fig. 13�b��, we find both
GQCA curves for the pure rs lattice structure close to the
MDM result. This is only true for the low-temperature result
of the pure wz structure whereas the high-temperature curve
differs remarkably in this case. For both rs and wz structure,
the SRS model shows the largest deviation from the linear
interpolation. Again this can be attributed to the stronger
variation in the values for B0 of the individual clusters with
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respect to the MDM curve with the strongest deviation oc-
curring for rs at x=0.75 �cf. Fig. 13�b��. For the mixed sta-
tistics for CdxZn1−xO, we find again that the low-temperature
curve closely follows the linear interpolation while the high-
temperature curve shows pronounced deviations. At low con-
centrations, it follows the high-temperature GQCA curve of
the pure wz structure and does not even fully approach the rs
limit due to the very small energetical difference of these two
polymorphs for CdO �cf. Fig. 7�.

VI. SUMMARY AND CONCLUSIONS

In summary, we studied pseudobinary AxB1−xC alloys
whose binary end components crystallize in different crystal
structures under ambient conditions. To study MgxZn1−xO
and CdxZn1−xO with rs �MgO, CdO� and wz �ZnO� equilib-
rium lattice structures, we adopted a cluster expansion for wz
and presented a corresponding expansion for 16-atom rs
clusters. To include simultaneously locally different bonding
configurations with either fourfold �wz� or sixfold �rs� coor-
dination, the GQCA has been extended correspondingly. Be-
sides the GQCA which minimizes the mixing free energy
with respect to the cluster fractions xj, we took two other
distributions xj into account to simulate also certain nonequi-
librium growth procedures. We have combined these meth-
ods with ab initio density-functional calculations using the

semilocal GGA to treat exchange and correlation. This pro-
vides knowledge of structural and energetic properties for
each of the clusters which we use together with the cluster
fractions to perform the configurational averages and, hence,
to derive an averaged alloy property for given composition
and temperature.

Correspondingly, we find that the alloys’ thermodynamics
is determined by the local chemical bonding and the cluster
statistics and, therefore, the conditions under which the alloy
is prepared. The mixing free energies indicate a change from
preferred wz crystal structure to preferred rs crystal structure
at about x�0.675 for MgxZn1−xO and about x�0.95 for
CdxZn1−xO. We find that for MgxZn1−xO as well as
CdxZn1−xO, the random alloy is always the most favorable.
Only for CdxZn1−xO in the SRS limit, we observe the occur-
rence of a miscibility gap and binodal as well as spinodal
decomposition ranges with the critical parameters Tcrit
=1030 K and xcrit=0.34 for pure wz structure, Tcrit
=1940 K and xcrit=0.4 for the mixed statistics, and a critical
temperature above 2500 K for pure rs crystal structure. In
any case, we calculated even the temperature- and
composition-dependent amount of wz and rs clusters in the
system. The resulting ambivalent picture which is strongly
dependent on the actual conditions, is verified by a variety of
experimental results. For both material systems, there are
experiments that agree with our predictions but also other
experiments with deviating findings, showing that also mea-
sured properties of alloy films have to be related to growth
conditions, deposition method, possible subsequent temper
steps, etc.

For structural properties such as cation-cation distances
and bulk moduli, we also find a significant dependence on
the statistics that has been employed for the alloy modeling.
In addition, the pronounced temperature dependence of the
structural parameters and also the boundary conditions due
to the growth mechanism should lead to distinct experimen-
tal observations of the alloy composition.
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